Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Immunity ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38593796

RESUMEN

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.

2.
Circ Res ; 134(4): 393-410, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38275112

RESUMEN

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Complejo de la Endopetidasa Proteasomal , Ratones , Ratas , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Transgénicos , Péptidos/metabolismo , Mamíferos
3.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749325

RESUMEN

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Asunto(s)
Linfocitos T CD8-positivos , Longevidad , Recién Nacido , Humanos , Anciano , Epítopos de Linfocito T/genética , Linfocitos T Citotóxicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética
4.
Clin Cancer Res ; 29(17): 3384-3394, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37432976

RESUMEN

PURPOSE: Caveolin-1 and -2 (CAV1/2) dysregulation are implicated in driving cancer progression and may predict response to nab-paclitaxel. We explored the prognostic and predictive potential of CAV1/2 expression for patients with early-stage HER2-negative breast cancer receiving neoadjuvant paclitaxel-based chemotherapy regimens, followed by epirubicin and cyclophosphamide. EXPERIMENTAL DESIGN: We correlated tumor CAV1/2 RNA expression with pathologic complete response (pCR), disease-free survival (DFS), and overall survival (OS) in the GeparSepto trial, which randomized patients to neoadjuvant paclitaxel- versus nab-paclitaxel-based chemotherapy. RESULTS: RNA sequencing data were available for 279 patients, of which 74 (26.5%) were hormone receptor (HR)-negative, thus triple-negative breast cancer (TNBC). Patients treated with nab-paclitaxel with high CAV1/2 had higher probability of obtaining a pCR [CAV1 OR, 4.92; 95% confidence interval (CI), 1.70-14.22; P = 0.003; CAV2 OR, 5.39; 95% CI, 1.76-16.47; P = 0.003] as compared with patients with high CAV1/2 treated with solvent-based paclitaxel (CAV1 OR, 0.33; 95% CI, 0.11-0.95; P = 0.040; CAV2 OR, 0.37; 95% CI, 0.12-1.13; P = 0.082). High CAV1 expression was significantly associated with worse DFS and OS in paclitaxel-treated patients (DFS HR, 2.29; 95% CI, 1.08-4.87; P = 0.030; OS HR, 4.97; 95% CI, 1.73-14.31; P = 0.003). High CAV2 was associated with worse DFS and OS in all patients (DFS HR, 2.12; 95% CI, 1.23-3.63; P = 0.006; OS HR, 2.51; 95% CI, 1.22-5.17; P = 0.013), in paclitaxel-treated patients (DFS HR, 2.47; 95% CI, 1.12-5.43; P = 0.025; OS HR, 4.24; 95% CI, 1.48-12.09; P = 0.007) and in patients with TNBC (DFS HR, 4.68; 95% CI, 1.48-14.85; P = 0.009; OS HR, 10.43; 95% CI, 1.22-89.28; P = 0.032). CONCLUSIONS: Our findings indicate high CAV1/2 expression is associated with worse DFS and OS in paclitaxel-treated patients. Conversely, in nab-paclitaxel-treated patients, high CAV1/2 expression is associated with increased pCR and no significant detriment to DFS or OS compared with low CAV1/2 expression.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Paclitaxel , Expresión Génica , Terapia Neoadyuvante , Receptor ErbB-2/metabolismo
5.
Clin Cancer Res ; 29(13): 2456-2465, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014668

RESUMEN

PURPOSE: Tumor microenvironment (TME) immune markers have been correlated with both response to neoadjuvant therapy and prognosis in patients with breast cancer. Here, immune-cell activity of breast cancer tumors was inferred by expression-based analysis to determine if it is prognostic and/or predictive of response to neoadjuvant paclitaxel-based therapy in the GeparSepto (G7) trial (NCT01583426). EXPERIMENTAL DESIGN: Pre-study biopsies from 279 patients with HER2-negative breast cancer in the G7 trial underwent RNA-seq-based profiling of 104 immune-cell-specific genes to assess inferred Immune Cell Activity (iICA) of 23 immune-cell types. Hierarchical clustering was used to classify tumors as iICA "hot," "warm," or "cold" by comparison of iICA in the G7 cohort relative to that of 1,467 samples from a tumor database established by Nantomics LLC. Correlations between iICA cluster, pathology-assessed tumor-infiltrating lymphocytes (TIL), and hormone receptor (HR) status for pathologic complete response (pCR), disease-free survival (DFS), and overall survival (OS) were determined. RESULTS: iICA cluster correlated with TIL levels. The highest pCR rates were observed in hot cluster tumors, and those with relatively higher TILs. Greater inferred activity of several T-cell types was significantly associated with pCR and survival. DFS and OS were prolonged in patients with hot or warm cluster tumors, the latter particularly for HR negative tumors, even if TILs were relatively low. CONCLUSIONS: Overall, TIL level better predicted pCR, but iICA cluster better predicted survival. Differences in associations between TILs, cluster, pCR, and survival were observed for HR-positive tumors versus HR-negative tumors, suggesting expanded study of the implication of these findings is warranted.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Paclitaxel/uso terapéutico , Pronóstico , Linfocitos Infiltrantes de Tumor , Supervivencia sin Enfermedad , Terapia Neoadyuvante , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Microambiente Tumoral/genética
6.
Clin Transl Immunology ; 11(10): e1422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275878

RESUMEN

Objective: Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265-273, and its IBV and ICV homologues, presented by HLA-A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods: We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265-IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265-IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross-react towards these homologous peptides. Furthermore, we determined the structures of NP265-IAV and NP323-IBV peptides in complex with HLA-A*03:01 by X-ray crystallography. Results: Our study provides a detailed characterisation of the CD8+ T cell response towards NP265-IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265-IAV that is associated with superior anti-viral protection. Evidence of cross-reactivity between the three different influenza virus strain-derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion: We show that while there is a potential to cross-protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.

7.
Nat Commun ; 13(1): 6387, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302758

RESUMEN

The emergence of the SARS-CoV-2 Omicron variant has raised concerns of escape from vaccine-induced immunity. A number of studies have demonstrated a reduction in antibody-mediated neutralization of the Omicron variant in vaccinated individuals. Preliminary observations have suggested that T cells are less likely to be affected by changes in Omicron. However, the complexity of human leukocyte antigen genetics and its impact upon immunodominant T cell epitope selection suggests that the maintenance of T cell immunity may not be universal. In this study, we describe the impact that changes in Omicron BA.1, BA.2 and BA.3 have on recognition by spike-specific T cells. These T cells constitute the immunodominant CD8+ T cell response in HLA-A*29:02+ COVID-19 convalescent and vaccinated individuals; however, they fail to recognize the Omicron-encoded sequence. These observations demonstrate that in addition to evasion of antibody-mediated immunity, changes in Omicron variants can also lead to evasion of recognition by immunodominant T cell responses.


Asunto(s)
COVID-19 , Epítopos Inmunodominantes , Humanos , SARS-CoV-2/genética , Linfocitos T CD8-positivos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
8.
Nat Commun ; 13(1): 4951, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999236

RESUMEN

Interactions between a T cell receptor (TCR) and a peptide-major histocompatibility complex (pMHC) ligand are typically mediated by noncovalent bonds. By studying T cells expressing natural or engineered TCRs, here we describe covalent TCR-pMHC interactions that involve a cysteine-cysteine disulfide bond between the TCR and the peptide. By introducing cysteines into a known TCR-pMHC combination, we demonstrate that disulfide bond formation does not require structural rearrangement of the TCR or the peptide. We further show these disulfide bonds still form even when the initial affinity of the TCR-pMHC interaction is low. Accordingly, TCR-peptide disulfide bonds facilitate T cell activation by pMHC ligands with a wide spectrum of affinities for the TCR. Physiologically, this mechanism induces strong Zap70-dependent TCR signaling, which triggers T cell deletion or agonist selection in the thymus cortex. Covalent TCR-pMHC interactions may thus underlie a physiological T cell activation mechanism that has applications in basic immunology and potentially in immunotherapy.


Asunto(s)
Cisteína , Linfocitos T , Disulfuros , Antígenos de Histocompatibilidad , Complejo Mayor de Histocompatibilidad , Péptidos/química , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo
9.
JCO Precis Oncol ; 6: e2100280, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294224

RESUMEN

PURPOSE: Patients with metastatic triple-negative breast cancer (mTNBC) have poor outcomes. The Intensive Trial of Omics in Cancer (ITOMIC) sought to determine the feasibility and potential efficacy of informing treatment decisions through multiple biopsies of mTNBC deposits longitudinally over time, accompanied by analysis using a distributed network of experts. METHODS: Thirty-one subjects were enrolled and 432 postenrollment biopsies performed (clinical and study-directed) of which 332 were study-directed. Molecular profiling included whole-genome sequencing or whole-exome sequencing, cancer-associated gene panel sequencing, RNA-sequencing, and immunohistochemistry. To afford time for analysis, subjects were initially treated with cisplatin (19 subjects), or another treatment they had not received previously. The results were discussed at a multi-institutional ITOMIC Tumor Board, and a report transmitted to the subject's oncologist who arrived at the final treatment decision in conjunction with the subject. Assistance was provided to access treatments that were predicted to be effective. RESULTS: Multiple biopsies in single settings and over time were safe, and comprehensive analysis was feasible. Two subjects were found to have lung cancer, one had carcinoma of unknown primary site, tumor samples from three subjects were estrogen receptor-positive and from two others, human epidermal growth factor receptor 2-positive. Two subjects withdrew. Thirty-four of 112 recommended treatments were accessed using approved drugs, clinical trials, and single-patient investigational new drugs. After excluding the three subjects with nonbreast cancers and the two subjects who withdrew, 22 of 26 subjects (84.6%) received at least one ITOMIC Tumor Board-recommended treatment. CONCLUSION: Further exploration of this approach in patients with mTNBC is merited.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Cisplatino/uso terapéutico , Estudios de Factibilidad , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
10.
PLoS Pathog ; 18(3): e1010337, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35255101

RESUMEN

HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Australia , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Antígenos HLA-A , Humanos , Pueblos Indígenas , Virus de la Influenza B , Leucocitos Mononucleares , Péptidos
11.
Cancer Res Commun ; 2(9): 937-950, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36922936

RESUMEN

CLDN18.2 (Claudin18.2)-targeting therapeutic antibodies have shown promising clinical efficacy in approximately 30% of gastric cancers expressing high levels of CLDN18.2 and less pronounced activity in low expressing malignancies. Here, we report that ZL-1211 is a mAb targeting CLDN18.2 engineered to promote enhanced antibody-dependent cellular cytotoxicity (ADCC) with the goal of achieving more potent activity in a wider spectrum of high- and low-CLDN18.2 expressing tumors. ZL-1211 demonstrated more robust in vitro ADCC activity than clinical benchmark not only in CLDN18.2-high but also CLDN18.2-low expressing gastric tumor cell lines. Greater antitumor efficacy was also observed in mouse xenograft models. Natural killer (NK) cell played critical roles in ZL-1211 efficacy and NK-cell depletion abrogated ZL-1211-mediated ADCC activity in vitro. ZL-1211 efficacy in vivo was also dependent on the presence of an NK compartment. Strikingly, NK cells strongly induced an inflammatory response in response to ZL-1211 treatment, including increased IFNγ, TNFα, and IL6 production, and were recruited into tumor microenvironment in patient-derived gastric tumors expressing CLDN18.2 upon ZL-1211 treatment to lyse the tumor cells. Taken together, our data suggest that ZL-1211 more effectively targets CLDN18.2-high gastric cancers as well as -low expressing malignancies that may not be eligible for treatment with the leading clinical benchmark by inducing enhanced ADCC response and activating NK cells with robust inflammation to enhance antitumor efficacy. Clinical activity of ZL-1211 is currently under evaluation in a phase I clinical trial (NCT05065710). Significance: ZL-1211, anti-CLDN18.2 therapeutic antibody can target CLDN18.2-high as well as -low gastric cancers that may not be eligible for treatment with clinical benchmark. ZL-1211 treatment induces NK-cell activation with robust inflammation to further activate antitumor immunity in tumor microenvironment.


Asunto(s)
Neoplasias Gástricas , Ratones , Animales , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Citotoxicidad Celular Dependiente de Anticuerpos , Células Asesinas Naturales , Línea Celular Tumoral , Inflamación/tratamiento farmacológico , Microambiente Tumoral
12.
Cancer Res Commun ; 2(11): 1404-1417, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36970051

RESUMEN

Tumor-associated macrophages (TAM) are the most abundant immune cells in the tumor microenvironment. They consist of various subsets but primarily resemble the M2 macrophage phenotype. TAMs are known to promote tumor progression and are associated with poor clinical outcomes. CD47 on tumor cells and SIRPα on TAMs facilitate a "don't-eat-me" signal which prevents cancer cells from immune clearance. Therefore, blockade of the CD47-SIRPα interaction represents a promising strategy for tumor immunotherapy. Here, we present the results on ZL-1201, a differentiated and potent anti-CD47 antibody with improved hematologic safety profile compared with 5F9 benchmark. ZL-1201 enhanced phagocytosis in combination with standards of care (SoC) therapeutic antibodies in in vitro coculture systems using a panel of tumor models and differentiated macrophages, and these combinational effects are Fc dependent while potently enhancing M2 phagocytosis. In vivo xenograft studies showed that enhanced antitumor activities were seen in a variety of tumor models treated with ZL-1201 in combination with other therapeutic mAbs, and maximal antitumor activities were achieved in the presence of chemotherapy in addition to the combination of ZL-1201 with other mAbs. Moreover, tumor-infiltrating immune cells and cytokine analysis showed that ZL-1201 and chemotherapies remodel the tumor microenvironment, which increases antitumor immunity, leading to augmented antitumor efficacy when combined with mAbs. Significance: ZL-1201 is a novel anti-CD47 antibody that has improved hematologic safety profiles and combines with SoC, including mAbs and chemotherapies, to potently facilitate phagocytosis and antitumor efficacy.


Asunto(s)
Antineoplásicos , Macrófagos Asociados a Tumores , Humanos , Línea Celular Tumoral , Macrófagos , Fagocitosis , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Anticuerpos Bloqueadores/farmacología
13.
Cells ; 10(10)2021 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-34685626

RESUMEN

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Epítopos de Linfocito T/química , Antígeno HLA-A2/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Linfocitos T CD8-positivos/citología , Cristalografía por Rayos X , Citocinas/metabolismo , Epítopos/química , Antígeno HLA-A2/química , Humanos , Mutación , Péptidos/química , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Resonancia por Plasmón de Superficie , Linfocitos T Citotóxicos/inmunología
14.
Biochem Soc Trans ; 49(5): 2319-2331, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34581761

RESUMEN

Human leukocyte antigens (HLA) are cell-surface proteins that present peptides to T cells. These peptides are bound within the peptide binding cleft of HLA, and together as a complex, are recognised by T cells using their specialised T cell receptors. Within the cleft, the peptide residue side chains bind into distinct pockets. These pockets ultimately determine the specificity of peptide binding. As HLAs are the most polymorphic molecules in humans, amino acid variants in each binding pocket influences the peptide repertoire that can be presented on the cell surface. Here, we review each of the 6 HLA binding pockets of HLA class I (HLA-I) molecules. The binding specificity of pockets B and F are strong determinants of peptide binding and have been used to classify HLA into supertypes, a useful tool to predict peptide binding to a given HLA. Over the years, peptide binding prediction has also become more reliable by using binding affinity and mass spectrometry data. Crystal structures of peptide-bound HLA molecules provide a means to interrogate the interactions between binding pockets and peptide residue side chains. We find that most of the bound peptides from these structures conform to binding motifs determined from prediction software and examine outliers to learn how these HLAs are stabilised from a structural perspective.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Péptidos/química , Unión Proteica
15.
STAR Protoc ; 2(3): 100635, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34124695

RESUMEN

Understanding T-cell responses requires identifying viral peptides presented by human leukocyte antigens (HLAs). X-ray crystallography can be used to visualize their presentation. This protocol describes the expression, purification, and crystallization of HLA-A∗02:01, one of the most frequent HLA in the global population in complex with peptides derived from the SARS-CoV-2 nucleocapsid protein. This protocol can be applied to different HLA class I molecules bound to other peptides. For complete details on the use and execution of this protocol, please refer to Szeto et al. (2021).


Asunto(s)
COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Antígeno HLA-A2/química , Fragmentos de Péptidos/química , SARS-CoV-2/metabolismo , Linfocitos T/inmunología , COVID-19/inmunología , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/aislamiento & purificación , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Cristalografía por Rayos X , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/metabolismo , Humanos , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo
16.
Science ; 372(6546)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34083463

RESUMEN

T cell receptor (TCR) recognition of peptide-major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using "reversed-docking" TCRß-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db-NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR-pMHCI binding or clustering characteristics. Canonical TCR-pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR-pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR-pMHC docking topology is mandated by T cell signaling constraints.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno de Histocompatibilidad H-2D/metabolismo , Proteínas de la Nucleocápside/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Animales , Complejo CD3/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T , Femenino , Antígeno de Histocompatibilidad H-2D/química , Antígeno de Histocompatibilidad H-2D/inmunología , Virus de la Influenza A , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/inmunología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Transducción de Señal
17.
Nat Commun ; 12(1): 2931, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006841

RESUMEN

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T/genética , Antígeno HLA-A24/genética , Pueblos Indígenas/genética , Adulto , Alelos , Secuencia de Aminoácidos , Animales , Australia , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Perros , Epítopos de Linfocito T/inmunología , Femenino , Frecuencia de los Genes , Antígeno HLA-A24/inmunología , Humanos , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Virus de la Influenza B/inmunología , Virus de la Influenza B/fisiología , Gripe Humana/inmunología , Gripe Humana/virología , Masculino , Ratones Transgénicos , Persona de Mediana Edad
18.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33945786

RESUMEN

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Coronavirus/clasificación , Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Reacciones Cruzadas , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígeno HLA-B7/química , Antígeno HLA-B7/genética , Antígeno HLA-B7/inmunología , Humanos , Epítopos Inmunodominantes/química , Memoria Inmunológica , Modelos Moleculares , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
19.
iScience ; 24(2): 102096, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33521593

RESUMEN

CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01.

20.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374673

RESUMEN

T cells are a critical part of the adaptive immune system that are able to distinguish between healthy and unhealthy cells. Upon recognition of protein fragments (peptides), activated T cells will contribute to the immune response and help clear infection. The major histocompatibility complex (MHC) molecules, or human leukocyte antigens (HLA) in humans, bind these peptides to present them to T cells that recognise them with their surface T cell receptors (TCR). This recognition event is the first step that leads to T cell activation, and in turn can dictate disease outcomes. The visualisation of TCR interaction with pMHC using structural biology has been crucial in understanding this key event, unravelling the parameters that drive this interaction and their impact on the immune response. The last five years has been the most productive within the field, wherein half of current unique TCR-pMHC-I structures to date were determined within this time. Here, we review the new insights learned from these recent TCR-pMHC-I structures and their impact on T cell activation.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Péptidos/química , Receptores de Antígenos de Linfocitos T/química , Animales , Sitios de Unión de Anticuerpos , Reacciones Cruzadas , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...